

1. Offshore electrification

Offshore electrification – context

Offshore O&G emissions (14MtCO₂e)

Carbon intensity of power generation (kgCO₂/MWh)

Potential emission reduction from electrification

North Sea Transiton Deal - committment

- 2025: -10% GHG emissions
- ▶ 2027: -25%
- ▶ 2030: -30%
- 2050: Net zero

Windpower expansion in Scottish waters

CES data and OGA Digital Platform

Cross-sector synergies

O&G operations and Windpower expansion (Scotland)

Offshore windpower and electricity transmission

- Strong windpower growth targeted: 40GW by 2030, 75GW by 2050 (projected)
- Move to deep waters: floating wind 1 GW by 2030
- Expansion in Scottish waters: transmission bottlenecks, onshore grid capacity constraints slowing down new windfarms until mid 2030's
- Electrification of oil and gas installations: 2GW power demand available today (~1.5GW in CNS, ~0.5GW in Shetland)
- Can support 3-4GW windpower capacity developments by supplying directly to offshore installations (*demand cables*) avoiding burden on onshore grid
- Additional O&G investment in offshore transmission could create an offshore grid lasting beyond O&G operations to debottleneck onshore capacity

Hydrogen

- Risk of curtailment of renewable power generation as significant capacity is added from intermittent sources (e.g. windpower) in the 2030's
- Cost of electricity transmission from production areas to demand centres increases due to longer distance and cable inefficiencies
- Hydrogen can represent an efficient energy transportation & storage solution to address these two challenges
- Additional benefit from a gradual and cost-effective conversion of large energy users compared to electrification (industrial processes, domestic heating)
- O&G industry's capabilities and infrastructure can support the ramping up of cost-efficient hydrogen supply that the UK will need

Electrification schemes (economics)

Benefit-cost ratios¹

Carbon prices projections³ (Electricity supply sector, inclusive of EU ETS and UK CPS)

³⁾ BEIS Updated Energy & Emissions Projection - Annex M (May 2019)

Enablers

💐 Oil & Gas Authority

Technical

- Floating wind approach cost parity with 'fixed bottom'
- Long distance transmission infrastructure (eg HVDC, reducing costs)
- Brownfield modifications
- Hydrogen as viable alternative? To reduce brownfield changes and mitigate grid constraints
- Systems not connected to shore (power continuity)

Regulatory / Economic

- Aligning windpower projects (consenting and planning) with O&G needs
- Debottleneck onshore grid capacity
- Commercial aggregate power buying
- Funding / financing

2. Carbon capture and storage

CCS will be critical for net zero

Other
 Agriculture
 Residential
 Energy supply
 Transport

Committee on Climate Change (2019) 'Net Zero: The UK's contribution to stopping global warming' (high case shown)

Where can the CO₂ be permanently stored

The UKCS is estimated to hold ~78Gt of potential CO_2 storage capacity, in over 560 subsurface stores¹. This capacity could potentially cover UK needs for 100s of years. However more work is needed to understand the effective UKCS CO2 storage potential.

UKCS CO₂ potential storage capacity¹

Store locations and O&G infrastructure

Main considerations for CO2 storage appraisal

Elements	Main criteria
Reservoir (All)	 Trapping mechanism Seal competence Store capacity Injectability Geomechanical effects Geochemical compatibility
Reservoir (O&G repurposing)	 All of the above Reservoir conditions at abandonment Damage to seal formation as a result of O&G production Formation damage which may affect injectability
Wells (P&A)	 P&A methodology CO₂ resistant barriers Verification Long-term monitoring
Wells (Repurposing)	 Well trajectory Casing and cementing Side-tracking and re- completion options

ETI, BGS, et al. UK Storage Appraisal Project (2011)
 BGS CO2stored.co.uk, and BGS/EIP analysis
 Axhurst, M, et al. Steps to achieve storage readiness for CO2 source clusters; GHGT-14 Conference (2018)

EIP analysis

Can O&G infrastructure be reused

🐞 Oil & Gas Authority

Oil & Gas pipelines with landfall (red, green, amber)

Oil & Gas infrastructure

Trunklines and spurlines (ca. 100 on UKCS) connecting offshore platforms with terminals; transporting separated, pre-conditioned hydrocarbons; better candidates for reuse:

- Location (connecting terminals to main CO₂ storage areas)
- · Larger diameters and higher design pressures
- · Having transported less corrosive fluids
- Having had better corrosion prevention, monitoring and inspections

Intra-field pipelines (ca. 1000 on UKCS) 'tie-in' nearby fields to main platforms. Less suitable for reuse for lack of above characteristics.

<u>Platforms</u> can be considered for reuse. CCS platform would be low-Opex, normally unmanned well-head installations, in particular if the original wells can also be repurposed.

<u>Other subsea equipment</u>, specifically designed for O&G wells control and fluid handling, very difficult to retrofit for CO_2 injection.

EIP Phase 2 analysis

Criteria for repurposing and reuse

Elements	Assessment criteria	
Pipelines	Design parameters Original design compatible with CO ₂ transport, and/or modifications are possible	
	Flow assurance Pipeline operations to ensure CO_2 is maintained in the same phase and free water not formed	

Internal corrosion

Depending on the pipeline material and assurance against water condensation, verify that sufficient corrosion allowance is in place

External corrosion

Integrity of external coatings (where exposed), absence of damage (eg trawlers), cathodic protection for intended operational life

Installation and seabed conditions

Verify pipeline stability (including seabed loads, free spans, and buckling) due to the greater CO2 fluid density and different temperature profiles

Other components

Compatibility of other pipeline components with CO_2 , including spools, risers, valves, pigging

EIP Phase 2 analysis

Initial ramp-up driven by industrial clusters

Clusters(1) /

Sullom Voe

Hubs

Flotta

St Fergus

Windpower growth green H2

Windpower growth green H2

Acorn and other projects to

Opportunity

UK industrial clusters and largest CO₂ sources

2025

1

Green H₂

Blue H₂

Potential CCS volumes (MTCO2 / year)

2040

2050

2030

2.5

	2
CO ₂ Point Sources (top 50)	North Contraction
Gas terminals	
Oil terminals	-
BEIS UK Industrial Strategy - Clusters decarbonisation	*
Other potential hubs	
Blue H ₂ opportunity	
18 3	
Barrow Barrow	
Ayr-Point Teddlethorpe	
	Bon
	5

CO₂ point sources (ETI)

rgus	Grangemouth					include blue H2 and NECCUS
n Bay sside Humberside Teddlethorpe	Teesside		1	2.5		Teesside Net Zero decarbonisation incl blue H2
	Humber-side/ H21 Leeds		1	2.5	?	Zero Carbon Humber (incl.H21 20MtCO2/yr)
	Bacton					Blue H2 from SNS and gas imports + green H2 from wind
	Merseyside- Ayr Point		1	2.5		HyNet blue Hydrogen and CCS from industrial sources
	South Wales					CCS industrial decarbonisation and green H2 from wind
	MtCO2 / yr (EIP outlook)		4	10		

Enablers

🔊 Oil & Gas Authority

Technical

- CO2 storage exploration
- Development: wells, processing, transportation
- Existing infrastructure: repurposing assessment, brownfield modifications
- Subsurface management and monitoring
- Infrastructure monitoring and remote operations
- ...

Regulatory / Economic

- Government support
- Drive cost down to commerciality (scale, learning)
- Onshore CO2 capture infrastructure
- Planning of other CO2 sources eg Blue H2
- O&G industry capabilities and supply chain, ensure timely transition

•

3. Hydrogen

Importance for decarbonisation

UK CO₂e emissions (2018)

- Other
- Agriculture
- Residential
- Business & Industrial
- Energy supply
- Transport

- Hydrogen can be an efficient way to deliver low-carbon energy to a large share of energy users
- Delivered as gas

٠

- Pure or gas blending
 - Can accelerate transition (eg does not require previous "electrification" of uses)

Hydrogen growth scenarios

Hydrogen supply – Blue

Blue hydrogen schematic (illustrative)

Steam methane reforming plant

Blue hydrogen economics (illustrative)				
Characteristics	Methane reformer Capacity: 200MW th (output) Efficiency: 75%			
	Natural gas consumption 19.5T/h (8.41Bcf/y) H2 production 6T/h (1.75 TWh/yr) CO2 capture 51T/h (0.45 MTCO2 pa)			
Capex	Equipment £130m Fabrication 78 Installation 20 <u>Project costs 45</u> Total Capex £203m			
Opex	Fixed £11m/yr Variable 27 Natural gas 62			
H ₂ levelised cost	2.66 £/Kg plus <u>0.17 £/Kg offshore CO2 T&S @ £20/tCO2</u> 2.83 £/Kg (85 £/MWh)			

Breakeven with electricity wholesale price (5p/kWh, 2020): $\pm 1.68/\text{KgH}_2$

<u>Next steps</u>: leverage low natural gas prices, deploy existing technology (reforming), repurposing O&G infrastructure, support growth of onshore H_2 demand,

Blue hydrogen ramp up

UK industrial clusters and largest CO₂ sources

CCS / blue hydrogen potential ramp up

Clusters and Hubs	ccs	Blue H ₂	CCS / blue hydrogen development potential
St Fergus - Grangemouth			Acorn project. CCS from BlueH2 and combustion sources. NECCUS link from Grangemouth (4.3MtCO ₂ /yr)
Teesside			Net zero Teesside decarbonisation including blue H_2 . Teesside industrial cluster emissions (3.1MtCO ₂ p.a.)
Humberside			Zero Carbon Humber (12.4 MtCO $_2$ /yr) includes Blue H2, BECCS and links with H21 project ources (20MtCO $_2$ /yr)
Bacton			Potential Blue H2 from SNS gas and interconnector imports. Green H2 from large expected windpower exp.
Merseyside			HyNet Blue Hydrogen (volumes TBD) and additional CCS from industrial sources (2.6 MtCO ₂ /yr)
South Wales			Large industrial cluster with 8.2 MtCO2/yr emissions, CO_2 could be transported by ship to storage sites
Southampton			Industrial cluster with 2.6 MtCO2/yr emissions, CO ₂ could be transported by ship to storage sites

CO₂ point sources (ETI)

Hydrogen supply – Green

Green hydrogen schematic (illustrative)

New technology proton exchange membrane (PEM)

Green hydrogen (electrolysis) economics (illustrative)			
Characteristics	Onshore electrolyser Capacity: 250MW (£2m/MW) H ₂ conversion efficiency: 70-80% Project life: 31 yrs		
Capex	Electrolyser £129m (£0.52m/MW) H2 compressor £38m (£1.15/KgH ₂ yr) <u>Ancillaries £333m (2x equipment)</u> Total Capex £500m		
Operational	Operational hours: 8,760 / yr H_2 output (net): 1.54 TWh/yr H_2 output (net): 39.5 kt/yr Electricity consumption: 2.19 TWh/yr Electricity price: 53 £/MWh (landed from windfarm at cost) H_2 compression: 12% of H_2 gross output Opex: £16.7 / yr		
H₂ levelised cost	0.63 £/Kg (excl. electricity) 3.60 £/Kg (incl. electricity)		

Breakeven with electricity wholesale price (5p/kWh, 2020): \pm 1.68/KgH₂

<u>Next steps</u>: Debottleneck windpower growth, leveraging ultra-low renewable electricity prices (oversupply), invest technology development (electrolyser cost reduction)

Green H2 unlocks power transmission and storage

il & Gas Authority

Targeted growth in UK offshore windpower capacity

Expansion in more distant regions Eg recent Scotwind Leasing areas (2020) Terminals O&G pipelines ScotWind Leasing Offshore Windfarms

- Converting renewable electricity to hydrogen...
- Can provide efficient transportation / buffering and storage
- Can give access to extensive natural gas distribution (eg via blending)
- Can open export market for zero carbon energy (H2 exports by pipelines to Europe and ships)

Enablers

il & Gas Authority

Technical

- H2 transportation and onshore usage
- Electrolysis
- Offshore hydrogen generation (several themes)
- ...

Regulatory / Economic

- Government support
- Energy transmission strategy
- Ramping up hydrogen demand (industrial, households)
- •